2024年量子科技行业发展前景与政策支持报告

1 量子科技概述:三大发展方向,政策支持力度大

1.1 量子力学:量子科技的理论基础

量子是指一个物理量最小的不可分割的基本单位。一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。例如,“光的量子”(光子)是一定频率的光的基本能量单位,其同时具有波动和粒子的性质,即光的“波粒二象性”。描述量子微观世界的理论——量子力学。量子力学是描述原子和亚原子尺度的物理学理论,有别于经典理论,粒子尺度上其状态是由波函数描述的一系列可能的概率分布,而不是一个精确的值。量子力学包含了一系列经典物理学难以描述的原理,如不确定性原理、量子纠缠以及量子叠加等。量子力学的原理不仅在物理学中有着基础性的作用,也是量子技术如量子计算、量子测量和量子加密的基础。

1.2 量子科技应用三大方向:通信、计算、测量

量子科技主要有三大应用方向,分别是量子通信、量子计算和量子精密测量。量子科技是利用量子独特的性质,来达到经典传统技术所不能达到的效果,并推动信息处理、测量以及计算等能力的进步。量子通信:又称为量子加密通信,是利用量子态的特性来实现信息的安全传输的技术,关键应用包括量子密钥分发(QKD)以及量子隐形传态(QT),利用量子通信能够实现最严格的信息论安全。量子计算:是一种利用量子力学原理进行信息处理的技术。它与传统的经典计算不同,主要在于量子计算使用量子比特(qubits)代替经典计算中的二进制比特(bits),这使得量子计算机拥有了经典计算机无法比拟的信息携带和并行处理能力。量子精密测量:是一种利用量子力学规律,对关键物理量进行高精度与高灵敏度的测量技术。它旨在实现单量子水平的极限探测、精准操控和综合应用,可以用于对时间、频率、加速度、电磁场等物理量进行测量,并且能够达到前所未有的测量精度。

1.3 政策提法:新质生产力&未来产业

量子产业是新质生产力的重要组成。新质生产力是创新起主导作用,摆脱传统经济增长方式、生产力发展路径的先进生产力,具有高科技、高效能、高质量特征。量子科技是新质生产力的重要组成部分,在多个行业中具有广泛的应用前景,能够提升信息处理速度、增强通信安全性,并提高测量精度,是新质生产力的关键要素。2024政府工作报告强调大力推进量子科技等未来产业发展。报告中提到,积极培育新兴产业和未来产业;制定未来产业发展规划,开辟量子技术、生命科学等新赛道,创建一批未来产业先导区。在《“十四五”规划和2035年远景目标纲要》中明确提出,中国将在包括量子信息在内的八大前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。

1.4 国际竞争:量子科技是大国博弈的重要领域

量子技术国家间流动受限,是大国博弈重要领域。欧美等国家为占据竞争优势,对量子技术实施一系列的限制,美国自2023年8月起开始限制私募股权和风险投资公司在中国量子计算领域的投资,并于2024年5月将中国22家与量子科技相关的企业纳入出口管制实体清单;此外,欧盟也于2023年6月发布《欧洲经济安全战略》,对量子计算领域外包做出严格限制。我国牵头制定量子国际标准,抢占国际竞争先发地位。据ISO官网,《量子密钥分发的安全要求、测试和评估方法》国际标准提案已在2023年正式发布。这是首个系统性地规范量子密钥分发安全检测技术的国际标准,由中国信息安全测评中心、国盾量子牵头联合制定。量子保密通信的国际标准发布将对相关产品设计和应用提供国际权威的指导,对全球相关技术发展有重要引领作用。

2024年量子科技行业发展前景与政策支持报告

2 量子通信:信息加密重要发展方向,逐步实现商业化落地

2.1 量子通信两大方向:量子密钥分发和量子隐形传态

量子通信主要有两大应用方向,量子密钥分发和量子隐形传态。量子通信是量子信息学的一个重要分支,是利用量子态作为信息载体来进行信息交互的通信技术。目前,量子通信的典型应用形式包括量子密钥分发(QuantumKeyDistribution,QKD)和量子隐形传态(QuantumTeleportation)。以具备信息理论安全性证明的QKD技术作为密钥分发功能组件,结合适当的密钥管理、安全的密码算法和协议而形成的加密通信安全解决方案,被称为“量子保密通信”。由于量子保密通信是现阶段量子通信最主要的应用体现方式,因此量子通信与量子保密通信在应用中可基本等同。

2.2 量子通信:保障信息安全的必然需求

现有信息加密技术主要基于经验安全,存在被破译可能。现有的加密体系,如对称加密、非对称加密等加密体系主要基于数学难题和计算复杂性来确保安全性,如大数的质因数分解(RSA算法的基础)或椭圆曲线上的离散对数问题(ECC算法的基础)。由于这些问题在现有的计算模型和已知算法下难以解决,因此相应的加密技术被认为是安全的。随着算力的提升和量子计算的发展,这些基于经验安全的加密技术可能面临新的挑战。通过量子计算机运行的量子算法,如Shor量子算法,它能有效分解大数,从而威胁到基于大数质因数分解的加密体系。应对量子计算挑战,实现量子安全主要有两种方式:后量子密码与量子密码。(1)后量子密码(PQC)又称为抗量子计算密码(QRC),其目标是能够同时抵御量子计算机与经典计算机的破译攻击,主要包括哈希密码、格密码、多变量密码等。(2)量子密码(又称为量子密钥分发)是以量子物理原理实现经典密码学的密码,代表性的技术有量子密钥分发(QKD)、量子随机数、量子数字签名等。

2.2 量子通信:保障信息安全的必然需求

信息需要保密的期限可能会受到量子计算机的冲击。根据滑铁卢大学的研究,信息保密期限(X)、将现有保密体系更新到后量子时代所需的时间(Y)与量子计算机构建时间(Z)是信息加密工作者需要考虑的三个变量。若更新基础设施的时间加上数据保密所需时间大于量子计算机问世的时间(即Z

量子加密能够实现安全的最高级别——“信息论安全”。“信息论安全”是指在攻击者拥有无限强的计算资源下,也无法在不引入明显错误或被检测到的情况下解密或篡改加密信息,是密码学中最高的安全等级之一,且能够被理论证实。量子物理中,单量子不可分割、量子态不可克隆、测不准以及量子纠缠等特性能够实现免疫计算破解的信息论安全,量子密码在保密通信中的应用主要有量子密钥分发、量子随机数以及量子数字签名等。量子加密通信较为成熟的方案是量子密钥分发(QKD)。量子密钥分发是以量子态为信息载体进行远程密钥分发,目前实现较大规模商用的方案为BB84协议,即通过量子信道进行量子密钥分发,在通过经典通信进行筛选比对和交互加密信息。此外,另一种纠缠测量方案利用了量子隐形传态技术,通过双方分享互相纠缠的量子对,分别进行测量解码后再由经典信道进行校验和交互,我国在基于“墨子号”卫星的星地一体的QKD网络中,已经实现了量子隐形传态的实验验证。

2024年量子科技行业发展前景与政策支持报告

2.3 量子密钥分发关键设备:QKD设备

量子密钥分发是通过量子保密通讯网络,利用量子加密终端提供量子密钥交互和加解密的过程。该过程需要同时利用经典信道和量子信道,其中,量子信道用于传输由量子态承载的量子比特信号,可以是光纤、自由空间(包括卫星链路)等物理媒介;经典信道是正常信息传输所利用的网线、光纤等。两种信道分别传输量子密钥和密文,并通过量子加密终端(QKD设备)进行密钥的生成比对、信息的加解密等。QKD设备系量子密钥分发的关键设备。QKD设备在量子加密通信中起到密钥生成接收和加解密等工作,是量子保密网络建设的关键设备。其内部组件主要由光源模块、编码调制模块、探测模块、数据分析与处理模块等一系列模块集成,未来可通过光电一体化等技术进一步提高集成度,实现加密终端的成本优化、体积缩小。

2.4 全球进展:我国已进入量子广域网阶段,欧美均已开展建设

我国量子保密通信网络已进入“星地一体”广域网阶段。我国量子密钥分发技术已经实现从城域网向广域网的技术突破,在2018年发改委批复后,我国国家光宇量子保密通信骨干网络已于2022年建成并全线通过验收。骨干网络全长超过1万公里,覆盖京津冀、长三角、粤港澳大湾区、成渝、东北等区域的17个省市约80个城市,是全球领先的运营级量子骨干网络。2016年“墨子号”量子通信卫星发射,该卫星实现了星地量子密钥分发、洲际量子密钥分发;2022年量子微纳卫星发射入轨,我国“星地一体”的量子骨干网络已基本建成。海外进展:美国起步较早,欧盟重点建设量子密钥分发网络。2022年,美国通过《量子网络安全准备法案》,针对政府信息利用后量子密码问题制定了具体计划;2023年,美国国家网络安全战略将防御量子网络攻击列为战略目标,涉及后量子密码的使用,以及替换存在漏洞的硬件、软件和应用程序的必要性。欧盟提出了EuroQCI项目,目标是到2027年提供安全通信,其全部27个成员国都签署了该项目。2021年,意大利、斯洛文尼亚、克罗地亚三个地区之间首次实现了州际量子安全通信(100.5公里)。2022年,欧盟通过了《欧盟安全连通计划条例》,为EuroQCI项目开发空间段,即IRIS2空间星座,计划25年底或26年初发射。

2.5 市场规模:网络安全日益重视,市场规模稳健增长

网络攻击风险提升,信息安全市场规模持续扩大。随着我国网络安全相关产业支持政策出台以及网络攻击风险增大,我国网络安全市场规模持续增长,2023年市场规模达633亿元,同比增长3.1%,预计2024-2027年我国网络安全市场规模将以8.7%的复合增速增长,在2027年达到884.4亿元。全球量子密码市场规模预计将以41.2%的复合增速增长。据MarketsandMarkets,2023年全球量子密码学市场规模为5亿美元,受到网络安全需求的驱动,24-28年CAGR预计将为41.2%,市场规模有望在2028年达到30亿美元。同时,QKD设备的小型化和成本下降、垂类行业保密准则的出台等因素将能够有效推动市场增长。

2.6 市场测算:城域网建设空间广阔,C端需求有望释放

我国量子保密通信城域网建设有望带来设备需求。目前我国已建成国家级量子保密通信骨干网络,未来将进一步开展沿线城域网络建设和边缘节点覆盖工作。考虑到建设量子保密通信网络建设投资主要为基建投入与QKD设备投入,因此总投资额将与网络的覆盖面积正相关,我们假设一线城市建设量子保密网络总投资额为5亿元、省会级城市建设投资为3亿元、二线以下城市投资额为1.5亿元,测算我国量子城域网市场投资需求总额为492.5亿元人民币。C端空间广阔,需求有望释放。中国电信在21年推出了“量子密话”业务;中国移动推出“和对讲”量子加密产品;科大讯飞、华为等厂商均推出了面向C端的消费级量子加密产品,市场需求有望加速释放。据中国电信,“量子密话”套餐有30元/月与50元/月两个档位,2023年其用户数量已超过100万户。由此,我们对电信“量子密话”市场空间进行了测算,假设24-26年量子密话在电信总移动用户渗透率分别为0.5%、1%、1.5%,电信移动用户数量增速为5%,预计26年量子密话市场规模将达42.5亿元。

2024年量子科技行业发展前景与政策支持报告

2.7 市场格局:产业生态逐步健全,关键元器件已自主可控

量子保密通信产业链逐步健全,下游应用场景广泛。量子保密通信产业链主要包括基础器件、核心量子设备、量子应用设备、集成建设与运营和垂类行业应用等几大层级,当前我国量子光源、探测器件、光学调制器件等大部分关键器件已实现自主可控,但高性能集成电路与国际先进水平存在一定差距。中下游方面,国内外量子保密通信网络仍处于早期发展阶段,国内外电信运营商及平台服务企业均在积极发力,国内量子云和大数据服务、政务信息保护、金融业务加密、电力安全保障等领域已经率先进行测试并推出相关产品,行业生态有望逐步建立。

3 量子计算:算力潜力巨大,关键技术逐步突破

3.1 量子计算:基于量子比特带来的强大并行计算能力

量子计算机采用量子比特计算。量子计算中的基本信息单位是量子比特,类似于传统数字电子学中的比特。与经典比特不同,量子比特可以存在于其两个“基本”状态的叠加中,写作|0⟩和|1⟩以作为经典态0和1的对应,可以被认为是指向“布洛赫球体”表面上某个位置的箭头。


量子比特状态的叠加使得大量并行计算成为可能。门电路的经典位只有两个可能值:0或1。然而,量子位可以是这两种信息状态的叠加,同时具备这两种状态的特征。如偏振光的叠加:用水平偏振光来表示0,垂直偏振光表示1,但光也可以在一定角度上偏振,同时具有水平和垂直分量。由此,N个经典比特一次表示的数字只有1个,但N个量子比特一次能表示的数字数目为2的N次方。量子计算输出结果具有不确定性。当运算结束测量量子比特时,其结果是经典比特的概率输出。如3个量子比特的系统,每个量子比特都是0和1的叠加,一次就能表示0到7(十进制)这8个数。当我们输入2(二进制010),并发出运算指令后,所有8个数都开始运算,都加2,并同时得出8个结果(2、3......9)。然而,量子计算机输出时,量子比特由于退相干会坍缩成其中的一个结果,因此量子计算机的高速计算是以不确定性为代价的。为了降低输出结果的错误率,在计算过程中的“量子纠错”和具体的“量子算法”能够缩小输出值的范围,提高输出结果的准确率。

3.2量子计算实现路径尚未收敛,不同路径各有优劣

量子计算的开发涉及多种路线,终局路径尚未收敛。目前量子计算机采用的技术包括超导量子比特、离子阱、光量子、中性原子等。超导量子比特利用超导体中无电阻流动的电流来实现量子态的操控。具体而言,超导量子比特依赖于约瑟夫森结,这是一种由两个超导体之间夹着一层薄绝缘体的器件。通过操控约瑟夫森结中的电流,可以实现量子比特的状态转换和操作。离子阱技术通过电磁场将带电的原子(离子)捕获并悬浮在空间中,利用激光来冷却和操控这些离子,从而实现量子计算。具体来说,离子阱系统使用射频和直流电场来形成一个三维势阱,将离子限制在一个特定的位置。光量子计算利用光子的量子态(如偏振或相位)来进行量子信息处理。


光子由于其低噪声和高速传输特性,被认为是理想的量子信息载体。在光量子计算中,常见的方法包括基于光子纠缠态和线性光学元件(如分束器、相位调制器)实现量子计算。中性原子量子计算通过激光光镊或光晶格来捕捉和操控中性原子,这些原子在光学陷阱中形成规则的排列,从而实现量子态的操控。光镊利用聚焦激光束的强光场梯度来捕捉和固定中性原子,而光晶格则通过干涉形成的光学驻波场来排列原子。

3.3 量子计算关键:量子比特数量、量子纠错、量子算法与环境测控

量子比特数量:量子比特是实现逻辑运算的基础单位,量子计算机通过操作量子比特进行逻辑运算,而可操控的量子比特数量决定了量子计算机的运算能力。经典计算机CPU中一般有数十亿个晶体管操控着经典比特,目前量子计算机仅能实现数百比特的操作。根据IBM等技术路线图,业内普遍认为1万量子比特将成为量子计算机走向实用化的里程碑,预计将在26-28年达成。量子纠错:量子系统由于受到测量或者环境干扰会逐渐失去量子相干性(退相干),因此量子计算机一般采用多个物理比特纠缠形成容错的逻辑量子比特,通过逻辑量子比特进行运算能够降低运算过程中产生错误的概率,提高运算质量。若计算机拥有1万个量子比特,经过纠错后可用于运算的逻辑量子比特数能够达到100余个。量子算法:量子算法利用量子力学特性来操作量子比特,解决计算问题。


如Shor算法(用于大数质因分解,能够指数级加快计算速度)、Grover算法(用于搜索,能够平方级提升排序速度)等,量子算法的拓展性、稳定性是实现通用计算的关键。环境测控:量子计算机为了保持量子比特相干性需要隔绝环境干扰,一般都运行在极低温度下,如超导量子计算机需要运行在接近绝对零度(-273.05°C)的环境中。因此提供低温的制冷机以及配套的测控系统也是量子计算机中重要的组成部件。


我国量子计算在最大比特和量子芯片方面取得较大进展。2024年4月25日,中国科学院量子信息与量子科技创新研究院向国盾量子交付了一款504比特超导量子计算芯片“骁鸿”,用于验证国盾量子自主研制的千比特测控系统。此款芯片刷新了国内超导量子比特数量的纪录,后续还计划通过中电信量子集团的“天衍”量子计算云平台等向全球开放。新测控系统集成度较上一代产品提升10倍以上,核心元器件使用国产化设计,在提升操控精度的同时大幅降低了成本。


全球在量子计算机的研究上取得了显著成果,量子计算机最大量子比特数量逐步由百位向千位突破。谷歌的“悬铃木”拥有53个量子比特;中国科学技术大学的“祖冲之二号”达到66个超导量子比特;美国国家标准与技术研究院的“北极光”拥有216个光子量子比特;中国科学技术大学新研制的“九章三号”达到255个光子量子比特;AtomComputing公司的“Phoenix”量子比特首次突破千位高达1225;D-WaveQuantum公司的“新advantage2”也有1200+个量子比特;IBM的首个模块化量子计算机“量子系统二号”搭载3个133量子比特芯片。量子比特的数量在不断增加,多种实现路径也在齐头并进,推动着量子计算机研究向更高性能方向发展。


近年来,国内外广泛开展基于中等规模含噪量子处理器(NISQ)和专用量子计算机的应用案例探索,涵盖化学、金融、人工智能、交运航空、气象等众多领域,产业规模达千亿美元级别。化学领域:通过模拟化学反应提高效率等,如德国尤利希中心提升寻找蛋白质最低能量结构成功率,牛津大学实现量子计算化学模拟,QCWare展示其在糖尿病视网膜病变检测的应用等。金融领域:可优化预测分析等,如法CIB等联合发布量子计算金融应用验证结果,摩根大通等使用量子深度学习分析风险模型,汇丰银行等推出量子算法工具。人工智能领域:可在机器学习等方面应用,如Zapata表明混合量子人工智能可生成药物小分子,慕尼黑大学用其训练数据集,清华大学演示量子神经网络等。交通物流领域:聚焦组合优化,如TerraQuantum等验证卫星任务规划,英伟达等用于提升喷气发动机效率,AmerijetInternational等报道优化飞机货物装载。气象预测领域:用于求解气象数据,如德勤举办量子气候挑战赛,美国能源部国家能源技术实验室研究胺化学反应。

(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)


上一篇

2024年集运市场供需分析与前景预测报告

2024-05-30
下一篇

2024年胶原蛋白行业市场分析与前景预测报告

2024-05-30