【信百会&神州数码】生成式AI企业应用落地技术白皮书:致广大而尽精微

生成式AI是一场技术范式变革


2022年末ChatGPT的横空出世及其之后的持续迭代,以一种人人可亲身感知的方式,把人工智能在自然语言领域里的重大进展在一夜之间展示在世人面前。而在企业应用场景方面,之前的AI技术都集中在相对专业的应用场景内,如机器视觉、语音识别、或推荐系统、风控管理等。但是语言,作为人类重要的思维工具以及知识组织和传播的最主要手段,其“能力泛化”的可能性远远超出了其他领域。因此,当ChatGPT能够与人类进行深入、富有深度的对话时,人们开始想象一个真正能够理解业务或专业、思考解答专业问题、甚至进行业务的组织、管理和创新的机器的可能性。对企业的数字化转型进程而言,生成式AI技术带来的潜在影响很容易让人将之类比于交通史上铁路系统的发明、亦或动力系统中对交流电的引入。


在生成式AI技术出现之前的十多年间,数字化转型一直是企业采取的一项重要战略,来促进企业在新的商业环境中保持竞争优势、创造新的商业机会。根据2011年,数字化转型最早的提出者之一——Gartner的定义,数字化转型包括从IT现代化升级(比如全面云化升级),到通过数字技术进行业务优化(比如精准营销)或业务模式创新(比如创新的引流和盈利模式)的一系列战略举措。近几年来,数字化转型的重点聚焦领域,已经越来越转向企业数据资产的建立。


而生成式AI出现之前,数据一般只有经过结构化处理之后,才能够在企业应用环境中发挥作用;而在企业的经营活动中,产生的大量的数据无法被结构化处理,比如内部海量的会议纪要、周报、季报,其中包含大量关于企业具体业务事项的分析和讨论;企业的大量的合同文本、项目验收材料,其中包含有大量的交易细节;而在销售和客服人员与顾客的线上互动文本,其中也有一手的客户对产品和服务的反馈;再有,就是企业产品的大量的用户手册、故障分析文档、产品服务和支持技术资料等等,其中有丰富的技术支持所需的知识。


并发式创新的复杂局面和企业应对的策略


生成式AI的企业应用落地,事实上已经形成了基础研发、监管和安全、应用开发、企业(或行业)》私域数据就绪、企业能力就绪等多个领域并行探索的局面。上述每一个领域既相互促进,又相互制约,而在企业应用的实际环境中,又需要探索业务流程、使用习惯和技术落地之间的变通和粘合。例如企业(或行业)私域数据就络意味着企业需要建立一套完整的数据管理和维护体系,来确保数据的质量、完整性和安全性,当大语言模型需要进行微调或适应特定场景时,可以迅速地获得高质量的训练数据。


生成式AI的六层技术生态


GPT的成功,促成整个AI行业的技术生态正发生着巨大变革,并形成了激烈的竞争:从众多AI芯片厂商奋力追赶英伟达当前的技术优势。到模型厂商间的“百模大战”迅速升级为“千模混战”。生态中的厂商都在力图找准自己的定位,形成自己的技术优势。激烈竞争的同时也带来了技术的快速发展,相关的论文和报告以惊人的速度发布着,新的应用以及产品更是层出不穷。


随着不断地创新、试错以及优化,生态架构中许多关键的概念逐步清晰,一些关键的技术沉淀下来,积极影响着企业场景的落地。我们可以明显观察到生成式AI相关技术的发展已经形成了六层技术生态体系,包含AI算力基础设施、基础大模型与相关技术、大模型与训练及评测数据、生成式AI应用开发技术、生成式AI安全与监控以及生成式AI应用设计。本章概述了架构中每层的核心技术,并结合自身在实际应用场景中的经验与思考.为大家带来生成式AI技术生态的总结。

【信百会&神州数码】生成式AI企业应用落地技术白皮书:致广大而尽精微
上一篇

【霞光智库】传媒行业2022年音视频社交出海市场研究报告

2023-11-07
下一篇

【艾瑞咨询】2023年奶咖市场发展白皮书

2023-11-07