【奇绩创坛】ChatGPT新机遇分享:新范式 新时代 新机会.pdf

2023-04-23
65页
18MB

面临一场快速到来的技术变革,比较有效的方法是去剖析:事物的内在结构,它的发展体系;什么是稳定不变的,什么是变化的,新现象是如何形成的。


最近奇绩举办了以《新范式 新时代 新机会》为主题的分享活动,陆奇博士以“新范式”为核心,分享了他对当前技术变革的观点,我们基于他的演讲整理了文字稿,也同步分享完整的PPT和视频,欢迎大家一起交流。


一、新范式

(一)新范式的内在结构、发展体系和所需的核心思考维度

ChatGPT新机遇分享:新范式、新时代、新机会插图1


范式通常指的是一种发展模式,它包括观念性的思考框架、以及实践体系和方法论。当前,我们正面临一场非常大的技术变革,这是一场范式的变革,它展现出了一个全新的范式。 每次范式变革都带来更多的机遇和挑战,因为它既要改变人们做事的方式,也要改变人们的思考方式。有些变革不一定是范式的改变,而仅仅是发生了新技术的变化,在这种情况下,我们仍然还可以用原有的思路做新的事情。 然而这一次,范式的变革影响更广、更深、更全面,我们必须在改变思考方式的同时,以此改变做事的方法。面对这一新范式,我们主要从以下三个重要的维度来进行分析:


数字化“三位一体”的结构、“三位一体”的终局。

技术如何驱动人类发展的全过程。

它对人、社会和人际关系的影响。

(二)从数字化产业发展维度看新范式

首先,从产业发展的维度来分析,这一次范式的变更带来了哪些影响。


“三位一体”是我们分析这次范式变革所用的稳定的内在结构体系,这一概念基于复杂学理论提出。


在复杂学理论中,我们每个人都是一个复杂体系,一个组织是一个复杂体系,人类社会是复杂体系,数字化系统也是个复杂体系,任何复杂体系都有三个子系统,它包括:


信息子系统(subsystem of information),体系必须从环境中获得信息。

模型子系统(subsystem of model),用模型对信息进行表达。它必须充分有效地表达信息,这种表达方式让它可以做推理、做分析、做规划。

行动子系统(subsystem of action) ,根据推理和规划与环境互动,来达到这个复杂体系的目的。

采用这个三位一体的结构,我们可以非常清晰地分析今天我们所看到的数字化产业发展的拐点,今天新的范式在本质上是怎样一回事。


首先,我们用三种不同的颜色代表数字化的三位一体的三个子系统:绿色代表信息子系统,蓝色代表模型子系统,红色代表行动子系统。


第一个拐点:信息变得无处不在

绿色这条线上有大量的公司,包括 IBM、微软,这里可以看到的是,1995 年至 1996 年间出现了一个大的拐点。这个拐点之后,信息系统呈爆发式增长,诞生了许多伟大的企业,如谷歌、苹果、亚马逊等,世界因此而改变。


为什么会有这个拐点?它背后的机制是什么?


要使产业发生根本性的变革,背后的驱动因素通常是它的成本结构变了,这类成本通常是某一类生产资源的成本,是一种触达我们生活方方面面并且我们都需要用的生产资本。


信息系统的拐点,是信息的生产和获取成本从边际成本转向固定成本。每次使用时的边际成本越来越低,但是一次性投入越来越高,这是一个结构性的变化。


我在卡内基梅隆刚刚毕业时(1995、1996年左右),那个时候买一张地图需要3美元,信息获取成本曾经相当高。在今天,我要找一张地图,网上搜索谷歌地图不到300毫秒,谷歌花费的成本不到1美分,我可以免费获得。而谷歌一年大约花了10亿美元的固定成本才做到此。地图是需要成本的,这个成本没有消失,只不过有一系列的技术降低了获取和分发地图信息的成本,从每次都要付很多,变成(google地图)一次性付很多。


谷歌使得地图可以无处不在,其他大量的信息也无处不在,商业模式简单,伟大的公司却就此诞生了,以谷歌和苹果为代表的移动互联网时代和以亚马逊为代表的云时代,都是一系列可以高度浓缩信息并分发信息的核心技术驱动的。


所以拐点出现的核心原因,是信息的获取成本从边际移向固定成本,使得信息变得无处不在。世界因此而变得扁平。


现在的拐点:模型将无处不在

现在我们看到2022年和2023年这个在蓝色曲线上,由 OpenAI 和微软引领,以及其他创业公司共同参与创造的拐点。


这个拐点的背后是“模型“的成本发生了类似的结构性变化,即模型成本从边际成本发展为固定成本。这背后的原因是我们有一项新的基础技术出现了,它叫大模型。


为什么模型的结构性成本这么重要?


因为模型就是知识。我们做任何一件事情都需要知识,知识的力量是无穷的,相比于信息时代,模型的产能更强大,发展的速度一定会比过去更快。


另一方面,模型与每个人都有关。从我们的社会互动和社会产业价值角度来讲,我们每个人都由以下三组模型组合而成:


认知模型,我们能听、能看、能说、能思考。

任务模型,我们每个人都能爬楼梯、剥番茄,做各种各样的动作来完成任务。

领域模型,有些人是律师,有些人是医生,有些人是科学家等等,我们人的社会价值都是这些模型体现出来的。

另外,人类社会中每一件事情都由模型来表达和驱动。例如,要运营一家公司需要一组模型,包括战略、营销、研发等等;城市管理,需要一组模型;国家治理,也需要一组模型;每个社会层面需要解决的问题,都是由相应的领域模型、任务模型和人组合完成的。


在大模型技术高速发展的时代,一个重要的趋势是:我们每一个人,除非你有独特的见解、独特的认知、独特的问题解决能力,否则你能做的,大模型都可以做到。


这一次的拐点,它攀升的速度一定会比1995年、1996年还要快。模型将无处不在,知识将无处不在。今天我们打开手机、打开任何一个设备,信息过来了;以后打开任何一个设备,是模型过来了。医生诊断是模型,律师服务是模型,设计师是模型,艺术家是模型,方方面面它都无处不在。


同时,一系列伟大的公司会因此诞生,他们将付出固定成本,他们将发明新的商业模式,最后我们整个产业+变革,产生新的世界。这是这个蓝色拐点所代表的。


这个拐点的发展只是时间问题,而且这个发展的时间会非常非常快,比我们的想象还快。


下一个拐点:行动将无处不在

基于三位一体的结构,我们可以自然地回答下一个拐点是什么,毫无疑问,下个拐点是行动系统。


今天的大模型时代是个生成模型,它能有效地控制操作各种设备;下一个拐点将是机器人、自动驾驶和空间计算的组合为基础。今天采取行动的成本很高,但借助大模型的互动,未来采取行动与环境互动以满足人的需求的成本将会越来越低,行动将无处不在。


要引领下一个拐点,特斯拉目前处在非常优势的地位,因为它在机器人技术、自动驾驶技术、人工智能技术方面的整体布局相当完整。其他公司会不会参与下一波,抢占下一个拐点?我们拭目以待。


未来的可能:数字化技术和人类社会一起共同进化

通过数字化三位一体的结构性分析判断,我们可以看清今天的新范式,它的终局是数字化技术将达到三位一体,与人类社会共同进化,这一共同进化从长期看,将带来真正的智能系统。


真正意义上的智能系统,必须具备四个核心环节:


第一,它能够涌现(应当具备自我组织和自我优化的能力,能够在特定环境中自发地形成和调整结构,而非由某个中心控制器编程或设计)

第二,它有代理能力,能够自主决策(它可以代表用户或实体独立地进行决策和执行任务,而不仅仅是简单地响应外部指令)

第三,它功能可见,有 affordence(Affordence 是一种设计原则,强调让用户直观地理解如何与产品或系统进行交互)

第四,它是具象的(既有形象、直观的表现形式,便于用户理解、感知和操作)

(三)从技术驱动人类发展的维度,看新范式

接着,我们看这次范式变更的第二个维度:它在人类以技术驱动社会发展的进程中扮演的多维度的重要角色。


ChatGPT新机遇分享:新范式、新时代、新机会插图2


科学范式进入第四(第五)范式

上图左下角(①科学的范式)表达的是人类无尽地追求知识、能力和财富的过程。这一过程有三大要素:


第一是科学。科学是解释和预测现象。科学发展从第一范式经验主义,到第二范式系统性地做实践,再到第三范式大理论做模拟,第四范式数据驱动,第五范式数据加技术驱动。人类社会进步最根本的生产力是科学的进步,这次的技术变革直接驱动了新一代的科学发展范式。科学高速进入第四的数据驱动、第五的计算驱动即大模型驱动阶段,这是这个新范式对人类发展结构里的第一个根本影响。


第二是技术。技术的本质是人基于科学开发的能力去改变自然现象,用信息转化能源去满足人的需求。


第三是经济。人类的经济发展体系是技术驱动的。技术驱动的社会经济发展到目前为止,只有三种大的模式,这三种模式都是信息和能源的组合决定的,(1)农业社会主要靠光合作用;(2)工业社会靠化石能源加上机械设备、电气设备,电子设备;(3)数字化,用信息越来越有效地转化能源。


数字化范式变更:加速数字化的能源转化

图中右下角,指的是当代技术驱动人类发展的体系。我们现在所处的是第三代,是数字化时代这条蓝色的曲线。这张图表达了两层含义:


一方面,数字化时代根本意义上是用数字化、可编程的能力更有效地转化能源;另一方面,数字化是人的延伸,数字化是人自我的认知和能力的延伸。


在这个时代,数字化是核心驱动力。这次数字化范式的变更,将直接驱动模型和行动体系,加速数字化转化能源的能力。进而,我们可以更有效地去改造世界,满足人的需求。


人类改造世界范式变更:探索进入更远更深更广阔

要改造世界,满足人的需求,有以下几个组成部分:


我们需要能源,要转化能源,要新的可持续的能源,用技术来驱动;

转化能源只有两条通路:一种是用生命体系来转化,另一种是用物理体系转化;相应的,我们在高速发展新生命科学和新材料科学;

能源转化必须要有物理空间,我们在高速发展新空间技术去去创造价值。

整合在一起,我们可以看到的人类在认识世界,改造世界,为我所用的路程,将直接和间接地被今天的新范式进一步驱动。


经济发展范式变更:更多的企业成为科技公司

今天的经济核心生产力,基本还是以设备、劳工、资本、大众商品、原材料、能源等。未来技术将越来越多的成为直接生成力,越来越多的企业将成为科技企业。


什么是科技企业?举一个例子,为什么特斯拉是大家公认的一家科技公司?科技公司与非科技公司的根本区别在于什么?因为特斯拉用信息、用软件、用人工智能,能源转化效率越来越高,它每设计一个新的车子、每研发一个新的设置、每制造一个新的设备,效益都在越来越高。而老一代汽车企业它的核心生产力,还是以前的流水线、工人、设备等。本质上,它让“信息更有效地转化能源”,让技术驱动创新成为直接的生产力。


(四)新范式的社会影响

ChatGPT新机遇分享:新范式、新时代、新机会插图3


很多人说这一次的变革堪比工业革命,本质上是有道理的。我们不妨回顾下人类历史的发展:


农业社会:让人可以定居,从此有了“家”的存在

农业社会之前是游牧时代,是人找吃的东西,但我们从农业社会开始,发明了技术:耕种、家畜等。这些技术给人带来了一个重要价值,人可以定居,有家,有固定的发展环境。


工业社会:解放土地对人的束缚,减少大量体力劳动

工业社会对人带来的影响是根本性解放:


第一,它把农业社会中将人绑定在土地上、没有移动自由的情况,转变到人基本上有大量移动自由、可以到别的地方去工作生活的情况。


第二,它也逐步把人从强体力劳动当中解放出来,人基本上不需要走很多的路,不需要扛很重的东西,不需要做大量的重复性劳力工作。机械设备、电器设备、电子设备这些工业时代的早期产品基本上把这些劳力都替代掉了。


工业革命对人的影响是巨大的,一方面解放了土地,另一方面释放出了人的大量体力劳动。


信息时代:随时随地获取信息,减少大量脑力劳动

信息时代让人可以无处不在地获得信息,进一步减少人类的脑力和体力劳动。


经济发展也从产品经济变成服务经济,这个时代的典型职业是码农、设计师、分析师等。


大模型时代:脑力劳动有了替代,人类有了智能伙伴

这一次大模型时代的变革,也将形成新的社会关系。


与工业时代进行类比,工业时代给了我们很多能力,封装成钢材、汽车、火车、设备,我们要用体力做的东西基本上都被替代了。


而这次,我们有一系列的模型,它们也可以封装成各种形式,各种各样的设备,我们脑力要做的事情都都可以让它们来辅助,替代和提高。人的脑力劳动将以形成非常独到的见解和发展独特的认知能力为主。


这个时代的典型职业将是创业者、科学家和艺术家。艺术家和科学家的本质是形成独到的见解,而创业者是把想法变成现实的人


人工智能时代:建立全新价值体系,探索更多未来

我在 YC 研究院和 OpenAI 下面做了一个项 UBI(通用基本收入:Universal Basic Income) ,它研究的问题就是:当人们不需要为了谋生工作的时候,人们的驱动力和行为将会发生怎样的变化。


我们可以想象的是,全新的价值体系将被建立。由于数字化的能力以及 Web3 的存在,在未来的时代里,信息触手可及、人们自由移动、经济基础改变,由此产生一个问题:人类会不会回到新一代的游牧时代?


(五)新范式的缔造者

ChatGPT新机遇分享:新范式、新时代、新机会插图4


范式带来的挑战和机会,就是适应新的思考方法和新的实践体系。


我们如何去更好地把控这个机会?


有一个关键方法,是认真分析研究这个范式的缔造者:看看他们是怎么思考的、怎么实践的。


这一次新范式的到来,不是水到渠成的,它是一个突变。


OpenAI 为什么能够破局,因为它走了一条反共识的道路。


要了解 OpenAI 的历史,必须要了解 Sam。我跟 Sam 是在2005年在哈佛大学举办的 YC 成立仪式上认识的,他是 YC 体系思路的继承者和传播者。2014年他接管了 YC,成为 YC 的掌门人。


2016年他联合创建 OpenAI,他和他的团队核心人员代表了新一代特殊的组合能力,代表着可以推动这个范式进一步往前发展的思考体系和执行体系。


OpenAI 的思考体系

他们的思考体系,有几个重要的特征:


第一,坚信未来,坚信通用智能一定会到来,任何人都挡不住 Sam,他建立打造 OpenAI 的一切都不会让任何人干预控制;Open 用最快速度实现 AGI。


第二,在技术上,他们相信两个重要的点:一是模型只要足够深,用无监督学习,用数据加上算力,用一个高效的训练体系,就能无止境地探索通用智能;二是强化学习或者增强学习,这跟进化在本质上相关,是模型能为人所用的核心。


他们坚信这两点。早期做了大量强化学习方面的探索,等到他们强化学习已经有一定基础之后,就立马把所有精力和资源聚焦在无监督学习上。


OpenAI 的执行体系

新的能力:在团队能力上,他们坚信新一代的组织既要做前沿科研,又要做基础工程研发,还要开发平台和产品及商业化。OpenAI 所代表的是全新的组织、全新新的能力,他们所做的一切是要既能做科研、又能写代码、又能做产品,这些能力是分不开的。


新的组织:有一个重要关键要素是它需要融到大量的资本,长期要回归社会,而且在实体结构上实现任何投资者都不能影响你追求的目标。


OpenAI 不是一家公司,也不是合伙制,它是一种崭新的新型组织。从长期来看,OpenAI 的盈利结束之后,它所产生的一切都是社会公有的,它的顶层阶段是一个 Nonprofit 。这是经过深思熟虑之后,非常有勇气坚持着一步步追求他们走的路径,才能造成迄今7年后的突破。


Open AI 的技术发展路径

GPT1 是重要的第一步,预训练大模型,核心是通过自然语言处理和解决问题。


自然语言处理通常包含多个任务,传统做法是每个任务去训练一个模型。OpenAI 不这样做,他们预训练一个大的模型,但是预训练的结果要和单独做模型一样好,甚至更好。GPT1 就做这个,做一次预训练,就能达到在多个自然语言任务上使用的目标,GPT1 的效果比单独针对具体任务训练的模型还要好。


GPT2 是迁移,在预训练之后做微调, 可以把预训练中学到的东西,通过微调迁移到新的下游任务模型中。


GPT3 是非常核心的一步,实现很强的泛化能力。


在少样本和0样本情况下,GPT3 展现出强大的泛化能力,尤其是通过场景下学习(In-context-learning)和给定提示解决问题,无需微调。


Dalle-E,启动图像模态。


Codex:为编程语言微调,引入模型重要的逻辑能力和长期用AI来开发AI的路径。


GPT3.5 实现了根本性突破,引入了指令微调。


人可以去写指令,开启了能让模型全方位对齐的开发能力;它先用了代码的指令Codex,而真正在产品上突破的是对话指令,就是让它去学会人是怎么对话的,进而诞生了 ChatGPT。这是人类历史上从来没有发生过的成就:短短两个月内,内达到一亿活跃用户,用的人还越来越多,有很多愿意付费,这在历史上前所未有。


GPT4 实现了了完整的工程研发体系。


GPT4 之后,如 ChatGPT、plugin 等将全面建立产业生态。


从 OpenAI 的发展中我们可以看到:一个团队如果是在运用新的范式下的核心思考和实现体系,他们创新的能力将有多大?


因此,在这个时代,深度解读 OpenAI 的成长历史,了解他们的思考实践体系,对我们来说是有很大的意义的。


(六)新范式的动力引擎

ChatGPT新机遇分享:新范式、新时代、新机会插图5


GPT模型体系,驱动新范式的动力引擎

在这个范式的背后,有组核心技术,一个动力引擎在驱动着这个范式的进展。引擎的内核是驱动的源泉,它在本质上就是 GPT 模型体系。GPT 是个模型系统,这个大模型像一个黑洞一样,把所有的模型都吸进这个引擎里面去了。


1. 它能够高效地压缩表达所有的人类关于世界的知识,尤其是文字或者其他模态,比如图片、视频。


GPT 为什么能够进行高效压缩?这里面有两个点:


要压缩信息,尤其是高效压缩信息,你必须要有知识,必须要理解世界,否则无法压缩信息,只能存储信息。

一个高度压缩的信息集,能同时用来解决多种任务,在根本意义上它就是知识,知识没有其他更好的定义。知识就是高度压缩的信息,一种信息的表达,可以用来解决多种问题,它的信息表达是非常紧凑的。

2. 能持续提高泛化能力(涌现,子概念空间等)它能涌现


涌现是什么?在相同的模型架构下,通过增加参数、Token或者延长训练时间,模型解决任务的能力会不断演进。例如,常识推理能力、算术能力以及针对特定任务的解决能力都会逐渐显现。在GPT模型不断提升规模的过程中,涌现现象持续发生,关于涌现的科研论文目前也非常活跃。


模型的泛化能力至关重要;少样本泛化和零样本泛化(如从一个例子中推断其他情况,甚至在没有看过的情况下也能明白其中原理)。仅仅在概念层面进行泛化是不够的。GPT 的泛化能力主要体现在潜在概念(latent concept)和子概念(subconcept)这个层面,并且其泛化能力在不断增强。


3. 推理能力不断的增强和被探索出来。


人类基本上拥有六、七种主要的推理能力,包括演绎、知识归纳、常识等。在GPT大模型中,这些推理能力会不断地通过诸如思维链(Chain of Thought)这样的提示展现出来。


4. 更有效更可延伸的对齐(自然语言,价值等)。


GPT 模型已经帮助我们将世界上的大量信息(知识)进行了压缩,而我们使用它的过程就是实现对齐。


OpenAI 的 GPT 模型在对齐任务方面取得了显著的成果。其突破性表现和增强学习方法在对齐方面表现突出,如自然语言理解和价值观的对齐。


潜空间对齐:首先,对齐任务需要与人类潜空间保持一致。通过图表、编程语言或自然语言使用大模型,都是实现对齐的手段。潜空间对齐本质上涉及到大量的权重调整。


价值观对齐:此外,为了善用大模型,还需要在价值观方面达到对齐,确保使用它不会对社会造成负面影响。目前,GPT 尚未达到主流社会可接受的价值观水平,因此 OpenAI 需要进行大量的价值观对齐工作。


5. 能足够并持续地充分利用更多有效算力尤其是 Transformer,实际上它的模型架构并不是最理想的。


虽然能利用算力,但效率并不是特别高。模型过于密集,对算力和通信带宽的要求很高。尽管如此,至少今天主流的算力还是可以被充分利用起来,从而带来更大规模的模型和更多的涌现。


6. 能用好充足的 token/模态和有效的 token 化。


目前我们的模型基本上能够充分且有效地利用人类知识所能触及的主要模态,如语言、图像、视频等。这些模态都可以很好地被转化为 token,而经过 token 化后,它们可以高效地融入到大型模型中。


7. 能有效地参数扩展。


小型化,本地化模型在不断地高效扩展,包括参数增加、(模型)层次加深以及在进行推理时实现更好的平衡。模型可以实现小型化和本地化,通过各种架构优化,在数字设备端(如物联网设备)上进行使用。


8. 能有效地扩展任务领域和专业知识。


模型具备系统性的扩展能力,可以与符号求解器、工具接口和专业知识相结合。这些集成在一起,使得模型具备足够的驱动力。


将这些能力相互叠加,我们看到了一个具备坚实基础、高操作性和强大扩展性的模型体系。它是这个时代背后的强大推动力,引领模型从边际成本走向固定成本。


引擎发展当下的四个要点

1. 核心维度过了拐点。


全方位攀升第一,它几乎封装了全世界所有的知识。第二,它内嵌了足够的学习能力和推理能力。本质上所代表的是一个今天的斯坦福高材生,几乎什么学科都懂,什么考试都可以考到前5% 。而且它学习速度非常快,不会累,可以永远不断地思考,有大量的算力可以用。它还自然语言界面,每个人都能用,每个人都能够得到价值。它的能力越来越强,能解决的任务越来越多。并且,它的成本在变得越来越低。显然,这个引擎在核心维度,已经过了拐点,并且在全方位地加速攀升。


2. 自然语言(NL)是突破的关键通向通用智能,OpenAI 走了一条反共识的道路。


在 OpenAI 之外,特别是四、五年前,几乎所有人都认为通用智能的发展路径与动物智能相一致。动物智能向通用智能演变的过程是先从视觉开始,通过视觉识别目标、学会推理,然后逐步形成符号,再发展为语言(先有口语,后有书面语言),最终形成像人类一样的完整知识体系。


然而,OpenAI 采用了相反的做法,它不是从视觉开始,而是从语言出发,去构建通用模型能力。


在我看来,语言是一个特殊的潜在认知空间,是人类与物理世界之间最宽泛、最重要的桥梁。从根本上讲,它更多是一种泛化和思考工具,而沟通只是副产品。没有语言,我们无法实现零样本泛化,而这种泛化能力正是最关键的。


在自然语言处理领域,我参与搜索引擎相关工作已有20多年,我认为历史上一直存在一个误区。传统自然语言处理方法的缺乏可行性,因为系统需要首先分析句子的各个成分,分析它是一个动词、名词或形容词等,但问题关键在于,这个词代表什么,是一部电影还是一个游乐场,这是需要以知识的理解和获取为基础的。因此,如果没有全球范围内的知识,从根本上无法处理语言。


OpenAI 采用了一种新方法。它利用 GPT 封装了世界上绝大多数知识,以此为基础,先构建一个知识引擎,再通过对话进行调试,从而实现自然语言处理。


这与过去十几年采用的方法截然相反。有了知识,它不仅能处理语言,还可以利用知识约束语言解释的空间。这种变化在某种意义上是从知识开始理解语言,而非在理解语言后获取知识。


自然语言处理现已突破了门槛,开辟了一种全新的人与数字世界的交互方式,为我们带来了一种有效且适用于任何场景的交互工具。


3. 可见和可持续的技术发展(右上角)。


右上角是关于这个引擎如何持续地将范式向前推进。


在向前推进的过程中,需要新技术、新科研成果、新的工程实践和新资源。我们能看到很多工作都在进行。


首先,在模型方面,需要解决模型的鲁棒性、模型稀疏化、扩展注意力宽度,甚至形成注意力循环等。


同时,需要更强的推理能力、更多的涌现、更强的潜在概念和子概念泛化,融合和统一符号运算与重叠向量堆叠体系,以及因果关系推理等。


其次,需进一步对齐,包括价值观对齐和拓展更多潜在空间。


同时,还需要研究更多模态,特别是跨模态的图像和视频。跨模态推理(从视觉模态学习推理,将其扩展到语言模态),语言模态中学到的泛化能力,无论是零样本、多样本还是少样本,都可以扩展到图像模态。


最后,覆盖更多领域和应用,提高模型的扩展性和适应性,加强工程实践。基础算力、通信系统、设施工具等方面的研究也在快速推进。


综合起来,这个引擎的能力将越来越强大。


4. 发展飞轮雏形启动这个动力引擎,它的增长飞轮已经形成雏形。


资本已经开始大量投入,商业模式盈利也已经具备初步的可行性,政府和产业界已经投入大量的算力,新的平台、新的应用、新的商业模式开始大量出现,越来越多初创公司和大厂参与的生态开始形成。每个人的生产力都在提高,它的安全问题、社会认可度也都在被积极的解决。


(七)新范式的演化路径:进化体系新物种

ChatGPT新机遇分享:新范式、新时代、新机会插图6


范式的变化,意味着思考与实践体系的变化。


大模型为人类技术发展开辟了新篇章,是技术世界中的全新物种。


技术的本质和内在规律:进化

著名作者,复杂学体系大师 W.Brian Arthur 写过一本书叫《技术的本质》。


书中主要的观点,是技术发展具有进化性,它的进化与达尔文进化理论非常类似,同样涉及结构、功能组合和选择,会朝着更符合人类需求更多的方向发展。


达尔文的进化选择,在于生存能力更强,对环境变化反应能力更强的才能生存,即适者生存。从某种程度上来说,进化并不意味着越来越强,而是变得越来越适应。而技术的进化是向人类需求多的方向做选择的。


大模型的进化方向:更好地满足人类的发展需求

大模型的发展方向,呈现出类似达尔文进化论的进化特点,即满足人类不断变化的需求。


大模型有很多基础模型,有不同的基础模态,比如蛋白、核酸、空间等不同模态;在大模型的基础之上,会演化出更多的模型,领域模型、工作模型、个人模型,它们都将会具有更强的记忆、推理等能力。


关注大模型时代,有2种模型系统,是我思考比较多的:


第一种是机器学习的模型(目前以系统1为主),今天大模型世界做推理的基础,基本上以系统1为主。相当于人类思考方式中的快思考、直觉反应。可以解决生活中方方面面的问题。


它是过程性的、可计算的、具有场景化的特点,当场景发生变化时,模型也会相应地调整,具有很强的可扩展性和易用性。优点是,它能够在特定的场景中进行对齐和泛化,但可能在其他领域并不适用。


第二种是人类建立的模型(基本以系统2为主),人建立的模型,它是基于人类专业知识建立的模型,相当于思考方式中的慢思考、逻辑推理,包括了像爱因斯坦理论和牛顿理论这样的科学理论、符号、结构、知识图谱和数学公式等。


这类模型的优点是,在专业领域具有很强的泛化能力,因为它们是基于专业知识和理论构建的。


然而,它与我们生活的方方面面联系很少,无法直接解释一些日常现象,例如树叶的形状、猫咪的颜色等。


我们真正的需求,是这两种模型之间的组合。当遇到一些关键问题,需要通过系统化方法进行逻辑分析、推理和严谨论证;同时,我们也有大量需求,并不需要进行深入分析,只需要直观快速反应。


当大模型和人类建立的模型结合起来,就能更好地解决人们的需求和问题。我们看到的发展趋势是,系统1和系统2已经有越来越多的整合,朝着更好的满足人类需求的方向演进。


大模型的进化类比:进化树和寒武纪

PPT 中右上角这张图,展示了可开源的大模型的进化树。借助这个初步的进化树,可以追溯到模型的源头、观察模型的能力,以及预测模型的未来发展。


可以看到,进化已经发生,一代代的模型在演变。


模型的生态,在某种程度上与我们的生物体系非常相似,如果关注学术论文和GitHub,就会发现这个新物种刚刚诞生,几乎每天都有新的演化出来的模型,大量新的子物种在不断涌现。


就像生物界的“寒武纪”时代:大量物种开始出现,开启新的纪元。


二、新时代

(一)产业发展的扩散结构与体系

ChatGPT新机遇分享:新范式、新时代、新机会插图7


技术创新推动人类进步、社会发展、产业发展等,通常遵循一系列稳定的扩散范式。


在这次变革中,由于新范式的特性,它对产业发展的扩散结构与体系,发生了深刻的、多方面的变化。


为了更深入地理解这次变革,我们将从以下三个层面,来解析产业发展的扩散结构与体系,并讨论这些变化如何在地理、社会、经济等层面上进行分布扩散:目的是通过这种分析能帮助我们全方位地探索和把控好机会。


扩散源头:变革的驱动力,包括组织形态、科研方式、商业应用;

扩散过程:发展周期与阶段、适用的理论模型;

影响范围:国家、个人、创业公司等。

扩散源头:从传统的独立组织形态,转变为融产学研为一体的高效生态

本质上,是 OpenAI 这样的团队在推动本次的创新。要实现从源头、在前沿的扩散,需要同时具备以下三个条件:


具备自主前沿原创性科研的能力,通过科研解决核心算法的完全原创性的问题;

进行大量系统研发和工程开发,能迅速将科研成果以高质量代码的形式实现;

具备开发技术平台、研发产品、推进商业化的能力,以形成产业生态系统,进一步驱动1中所描述的科研。

这三点,正是 OpenAI 为代表的新型组织所实现的。组织形态上,OpenAI 同时涵盖了以上三个领域,集产学研于一体。


还有一点不同的是,在过去的扩散过程中,政府一般都是后来才参与进来的,但这一次,政府很早就进来参与了。因为这个范式变更的特殊性,需要政府更早更有效的参与。


扩散范围:北美中国为主,深入个人

从全球范围来看,这次扩散以北美为主,中国紧随其后。以前的技术创新扩散,都是在北美扩散到了一定成熟度之后,再复制到其他地域,这一次,中国在快速追赶的同时,也将经历早期适合中国国情的扩散过程。


与此同时,这次技术创新的影响范围会深入到个人层面。


AI 工具帮助单个创业者或小型团队提高产能、创造价值。一些产品不再需要雇人,AI 可以进行替代。像设计者、码农、科学家、企业家、创业者,有许多都在用 Copilot 等工具提升个人产能。


而这次创新,带来的是提升人类认知能力的工具。它会进一步拉开人与人之间的距离:那些聪明、勤奋、努力,并且学会用这个工具的人,将快速超过原来同一水平、但不使用这类工具的人。


扩散过程:不是创新技术的发展,而是技术驱动社会经济的转变

在前文中,我们提到有些变革可能并未涉及范式的改变,而只是与新技术的出现有关。描述新技术生命周期时,人们常用的经典理论是 The Hype Cycle。然而,在这次变革中,我们认为它是一次彻底的范式改变,影响着整个社会和经济的长期发展,这种情况下,Carlota Perez 的 Techno-Economic Paradigms(技术经济范式)理论更为适用。


根据 Carlota Perez 的理论,若有一项技术,如冶金、高速公路、汽车等,能够影响每个人和整个社会,它的发展将以80年为周期,分为四个阶段:爆发阶段、狂热阶段、协同阶段和成熟阶段。


大模型时代目前还处于早期阶段,经过高速增长之后,泡沫破裂将是必然现象。


然而,在泡沫破裂之后,新的黎明将降临。届时,新一代更强大的企业将从破碎的泡沫中崛起,占据产业制高点,开创一个崭新的时代。


(二)OpenAI 生态快速形成

ChatGPT新机遇分享:新范式、新时代、新机会插图8


这一次的产业发展的格局跑在最前面的,起关键作用的是新一代的数字化产业,它的生态是由 OpenAI 来驱动的。


它的生态呈现了以下几个特点:(1)生态结构迅速形成,且高速发展;(2)生态结构类似过去的数字化平台,它包括前台和后台。


OpenAI 的后台

后台是 GPT-N 系列,目前为 GPT-4,未来将有 GPT-5、GPT-6 等。


它内部有大模型引擎,封装了丰富的知识推理规划能力,具有较强的开发和扩展性。OpenAI 提供 Foundry 和 PlayGround 等,包含 API 和简洁的收费模式。同时,许多第三方基于 OpenAI 后端开发服务和应用。


OpenAI的前台

前台是 ChatGPT。


ChatGPT 提供完整的用户体验,适用于所有人,解决各类问题。这是人类历史上首个真正实用的自然语言处理工具,具有足够的灵活性和内置知识。


它的前台具有生态扩展性,即“ChatGPT 插件 ”,OpenAI 已经开发了多个插件,如 Code、interpret 等,具备成为未来“杀手级”应用的潜力。大量第三方将使用插件开发前端应用。


在 OpenAI 平台之上,已经出现早期产业活跃发展,形成了一些初步的热门领域。


(三)开发堆栈雏形高速发展

ChatGPT新机遇分享:新范式、新时代、新机会插图9


这次新范式的产业扩散,开发者堆栈技术发展和开发者生态的形成,至关重要,历史上的生态发展一直是“得开发者得天下”。开发者工具、界面、开发者生态,永远是“兵家必争之地”。毫无疑问,OpenAI、微软都意识到了开发堆栈的重要性。


这也是我们十分关注的关键点,几乎每天都有大量新技术新服务,几乎每周都要重要的开发框架和工具出现。


以下我们分几个大板块来描述这方面的创新进展。


首先,我们把这一页分成两大板块:左边是模型开发;右边是应用开发。


我们先讲模型开发,它分为几个大模块:


关于大模型本身的开发,目前开发体系已初步成型,但通常以大模型团队的自主研发为主。首先,我们需要一个强大且全新的数据开发栈,包括语料、标注、管道等;其次,是模型开发栈,包括参数、token 以及架构优化等;第三,是集群管理的基础设施,如 RDMA 和 HPC 或基于以太网的 RoCE;第四,是训练系统及各种优化能力;第五,是对齐体系、指令调试能力以及 RLHF 等;第六,是评估系统;第七,是系统化的工程开发;第八,是一个能够根据业务发展需求和成本结构,系统性地开发大模型的方案。

关于垂直和领域模型的开发。目前能够使用的工具包括 Hugging Face,及创业公司 Lamini 等,功能包括模型指令调整、微调、蒸馏、提示等。近期基于开源模型的 PEFT(参数有效的微调)非常活跃。自有数据和开发工具同样重要。虽然还没有成熟体系支持专用模型开发,但这个的需求将会越来越强。尤其是基于扩散模型的,像 Stability、LoRa、 ControlNet,都是用来可以开发类似 Midjourney 这种以图片和视频内容生成为主的模型。

轻量的模型,体量小、算力要求低,适用于端侧设备,如手机、智能音箱和未来的 lOT 设备上。尽管已经有许多相关的研究和工作,但距离形成成熟的开发模式,还有一定的距离。然而,轻量模型的开发对未来产业发展至关重要。在轻量模型的优化方法上,有知识蒸馏、数据蒸馏、结构优化和量化压缩等,还需要大量的研发工作。

开源模型开发,这对降低创新门槛,产业能健康发展有很重要意义;目前许多开源体系已经取得了良好成果,比如 LLaMa 体系、Databrick 的Dolly、MosaicAI 的。

我们接下来讲“应用开发”(上页 PPT 的右边),这里也分几个大的板块:


关于快速形成的“开发的工具和工具链”(PPT 右边上半部分):


主流开发工具和工具链。这里发展非常迅速,有大量的机会;比如 Embedding 的外存等

扩展开发工具和方法和工具。这里有空前的机会,即让每个人都能用自然语言开发编程,可以用自己的抽象,自己的知识结构,推理,规划,执行等;每天都有大量的创新探索。

关于开发对象(PPT 右边下半部分),具体是开发的运行时和其他资源:


第一,后台服务端,目前主要都是以 OpenAI 和 Azure 为先导;Amazon 也很快进入战场;

第二,在前台,目前是以 Web 端为主,比如 Vercel Chrome;但是移动端目前没有动静,在 iOS 上,苹果还没出台他们的产品方案,在Anroid 上,谷歌目前忙于应付 Bing 的挑战;长期移动端和 IOT 端将有很多机会;

第三,开发生态的关键资源,如课程、书籍等。

(四)经济发展格局

ChatGPT新机遇分享:新范式、新时代、新机会插图10


全面强劲的经济发展驱动力

在此次经济发展格局中,早期的上升速度将非常迅猛,发展动力也将格外强大,这与以往的情况截然不同。


那么,为什么它的攀升速度如此之快,发展力度如此之强呢?


关键在于,这一次变革所触及的生产力正是“知识”。作为生产要素中至关重要的部分,知识的潜能是无限的。


在大模型时代,知识这一生产力得到了系统性的改变:


首先,新范式普遍降低了各类知识的成本。


其次,新范式提升了知识的应用能力,尤其是在知识密集型行业,如医疗领域、科研领域等。医生、护士等专业岗位都受到专业模型的帮助,不仅成本可以降低,相关产业的生产力还会极大地提升。


再者,新范式缩短了产生知识的迭代周期。


将以上三个要素综合考虑,新范式驱动的经济发展将呈现前所未有的速度和力度。


对职业的结构性影响

它将影响人类的每一个职业,因为人类的每一个职业,本质上都是模型的组合。


可以预测的是,每一个职业的人,都会开始用“副驾驶员(Copilot)”,当副驾驶员能力越来越强,它会变成“正驾驶员(Autopilot)”,再接着,我们都将会有一个 “驾驶团队 (Copilot team)”。


无论我们到哪儿,都有各类“驾驶员”跟着我们走。


人们之间的合作,变成人与人之间、人们的“驾驶员”之间的协作。新的职业会出现,人们的工作岗位也会随之发生变化。


更强大更活跃的数字化产业

在这次变革中,处于前沿的将是下一代数字化产业。


数字化作为人类活动的延伸,新的商业价值创造必然从数字化产业开始。


我们将拥有全新的核心技术堆栈、新的平台、新的基础设施、新的算力体系、新的通讯体系以及新的产品开发体系。以大模型为核心,整个数字化产业将全面升级和刷新,迅速迈入下一个发展阶段。


新的领军者和落伍者将很快浮现出来。


各个行业系统性的变迁

新的数字化产业,会让每个行业都根据这个行业的特性做出结构性的调整和转型。


假如你是一个公司的 CEO,可以对比人工和模型的成本,用大模型技术做系统性的重构和调优,把成本降低,把产能提高。


值得注意的是,现在 GPT 是基础设施,随着它从边际成本转移到固定成本,可以从成本的变化,看看这个产业怎么变。


同时,有的行业供需在发生变化,比如软件的需求,受到码农供给的影响,如果关注大模型时代对码农的产出提高多少倍,就可以借助它预测这个行业的结构性变革将从哪个方向发展,以及以什么样的速度来发展。


对市场和社会的长期影响

它深刻地影响了人类社会最基本的生产力:人。


教育领域将经历根本性的变革;人力资源的发展和配置也将改变并加速;作为人类首要驱动力的科研领域也将受到本质性的影响,因为它将引发科研的新范式;社会组织和信息传播同样会受到影响;政府与社会监管方式也将随之改变。


政府的更多参与

政府的参与更早、更活跃、维度更多。从 OpenAI 的发展上,能看到政府极早地从多个维度参与了其中,如监管、安全、数据隐私、社会稳定等。究其原因,是因为这次变革,从根本性上影响了生产力和生产关系。


在早期,尤其需要社会产业和政府做更多的互动,扶持和引导基础设施进入全球性的发展。


(五)新产业发展不断加速(海外)

ChatGPT新机遇分享:新范式、新时代、新机会插图11


图中展示了近5个月内我们关注到的新代码、新技术、新论文、新产品和新投资,我们做了简单的计算和统计,并将曲线绘制出来(如图)。


首先是论文数量,对于这次新产业的发展,关注论文是必要条件。同时,我们还需关注产品、资本投入和应用案例等方面。


我们仍在不断思考和探索哪些指标可以更敏锐地反映发展趋势、发展速度和发展信号。从根本上讲,这次范式扩散的宽度、广度和力度是我们过去从未经历过的。为了跟上时代步伐,我们需要不同的思维方式。


(六)新产业发展不断加速(中国)

ChatGPT新机遇分享:新范式、新时代、新机会插图12图1


ChatGPT新机遇分享:新范式、新时代、新机会插图13


图2


关于中国,我们现在的活跃度越来越高,我们在追赶,但是整体数量跟国外比还是有相当大的差距。


图2标了红色框的是一个重要的点,“奋起直追的团队”,有商汤、王慧文、李开复、阿里、百度等等,汇总在一起,能反映出中国产业发展快速攀升、不断加速的状态。


中国发展机会

在大模型时代,有一个特殊的现象:真正能做大模型的,全球范围内,只有两个国家和地区具备这个产业核心的能力,北美和中国。


要实现这个目标,需要足够大的人才、资本、技术和市场规模及密度,中国和美国是全球唯二的有机会的地方,长期机会非常大,但是今天,我们必须是奋起直追。


全球唯二,奋起直追

中国大模型追赶有三大环节:


第一是打造基础模型,是攀升至 GPT3.5。


这里每个团队需要自建一个模型开发体系,包括算力、语料、数据、评估等开源工具和系统;同时这个团队还有打造基础设施,尤其是将几千张和几万张卡连在一起的网络算力,如基于RDMA(直接访问GPU内存)和RoCE(基于 InfiniBand 的网络无法将数万张卡连在一起);关键是能持续稳定的攀升GPT3.5,我们认为谁先达到 GPT3.5,谁将能进入第一梯队。


第二是要打造模型产业化的能力。


攀升至 GPT 3.5水平后,要开发产业化能力,这里主要是具备足够的指令调优和对齐研发的能力。需要对代码做指令调试,它是提高模型逻辑能力和团队用 AI 来开发的关键;在对齐上,要基于 RLHF (Reinforcement Learning from Human Feedback)正向学习,结合人类反馈与自然语言对话对齐,与人的价值观对齐。有了这些,就具备了中国的 ChatGPT 的能力


第三是平台开发和生态建立。


后台打造 API 等相对来说比较直接;前台需要开发推广 ChatGPT 和 plugin 等;早期可以用简单的商业模型搭建起来,这就足以成为未来的平台和生态的制高点。


总结一下,打造基础模型、模型产业化能力和平台及生态开发推广能力,是早期中国攀升 GPT 3.5核心要素。


算力资源竞赛

中国目前在追赶 GPT3.5的团队约有10个左右,算力将在未来赢家和产业发展格局的形成中起到关键作用。年底前看谁能到达3.5,能拥有或持续获取算力是非常重要的。


我们所了解到的预估,是中国约有20万张 A100卡。今天国际头部大模型团队可能需要用1万张 H100(约10万A100)。而目前的算力情况来看,国内未来能有这样资源体量的团队可能不超过2个。


产业发展,齐头并进

第一,在追赶的过程当中,资本投入和创业公司将扮演一个重要的角色,目前已经有多个拥有足够实力和资金储备的团队。早期挑战很大,长期发展机会非常强。


第二,中国的大厂百度、阿里、腾讯等都投入了足够的研发能力和开发资源,一起参与打造 GPT,大厂在追赶期是有一定优势的,比如资源等。


第三,中国在追赶的过程中有额外的挑战,我们在算力方面有大量的工作要做,要补齐在算力上的限制,比如在算法和数据方面探索更多的潜力,在产业发展上,虽然算力是一个短期的挑战,但是中长期的机会就是中国自己做算力了。


在中国做这个产业发展有更多的两个不确定性,一个不确定性是算力的不确定性,但长期是个机会;另外是软件栈的不确定性,这也是中国自建的一个机会。


第四,中国的产业发展有越来越多国际化的机会,因为其他国家和地区是没有能力独立去自研的,比如东南亚、阿拉伯世界、非洲、南美,甚至于欧洲等等,中国的大模型都有能力去触达它。


最后,中国的应用生态在中期和长期的发展空间是相当宽广的,早期已经有很多中国的创业公司和大厂开始在准备开发基于大模型的应用。在国际化层面,中国的创业者在早期也有去北美的机会,尤其是做相对来讲敏感度不是很强的,比如企业应用客服等,这些中国的创业者都有更宽的机会,既可以在中国做,也可以在美国做,或者是在其他国家做。


全球化的创业机会

每个人都会有 Copilot,每个人都会有 auto pilot,每个人长期下来都会有副驾驶员的团队,人类的组织形式也会因此发生相应变化。综合在一起,每个职业的产能都将极大地提高。


OpenAI 分析,19%的劳动力将会被 GPT 影响至少50%。高盛研究,全球范围3亿人的工作将被AI自动化,80%的美国劳动力会被GPT影响至少10%。


基于对一些创业公司使用大模型的初步调研,我们发现,其中超过77%的公司使用的是 OpenAI 的接口(其中GPT4占21%, GPT3.5占46%);基于开源模型自研和使用 Stable Diffusion 的公司,各占3%。


国家引导

由于大模型的技术和它产业发展的本质,需要规模大和时间周期长的投入和布局。在基础设施层面,国家有机会起更大的作用,做出更多政策上面的引导。


尤其在一些特定领域,中国有弯道超车的机会,比如说在医疗、生命科学、数字城市这些赛道,用大模型来驱动创新,中国有独特的优势。


同时由于大模型对产业和社会的特殊影响,国家也会做出多个维度的监管治理。


社会影响

大模型对生产关系和社会关系有本质性的长期的影响。


首先对于教育而言,社会影响跟国外一样大。教育非常重要,过去在全球竞争格局当中,中国的学生体量大,中国的码农多,中国学科学的人多。但是有了大模型之后,这个局面被改变了,给我们带来了全新挑战。但是,挑战的另一面就是机会。中国未来的教育怎么发展?值得思考。


另外是对科研的影响,尤其是产学研更有效的结构性组合,让中国在科学发展基础上有更多的加速创新机会。未来的科研格局里我们有新的机会,第四范式、第五范式是数据和计算驱动的,产学研在中国有重新组合的机会。


最后是关于文化和文明,这跟语言和文化的底蕴有关。大模型代表了每个国家的基本文明,这一次大模型为先的创新,有机会在这个方面更进一步地做适合中国传统和文明的一个创新。


三、新机会:系统性、全方位的如何探索和把控我们的机会

(一)全方位探索把控:“人+事”的机会空间

ChatGPT新机遇分享:新范式、新时代、新机会插图14


1. “人+事”的探索框架

我们提出的框架主要针对创业公司,但对于任何组织和企业而言,只要是在有组织的去追求某个目标,它在结构本质上和创业公司都是一样的。因此,不仅是创业公司团队,其他相关人员也可以将这个框架应用于自己所做的企业、自己做的事情,从中获得有助于探索大模型时代的启示。不管你是从事什么行业,都可以在这个框架当中得到相应的经验收获。


对于创业公司,它的发展基本上都是创始人团队早期带来的核心能力、心力和愿力的组合。随后的发展通过增加人才、组织机构和文化价值观,作为有机纽带逐步增强组织活力。人基本上也都是这样的体系。


在事务体系方面,基本上对任何一个创业公司来说,都是系统性的打造能力去实现价值的一个过程。能力方面,包括开发技术的能力、开发产品的能力、满足用户需求的能力、获得商业价值的能力、触达更多用户客户增长的能力、在资本生态吸取养分的能力、融资的能力,任何企业都是能力的组合。


有了这种能力之后,你才在你的价值空间当中去实现价值。我们一般都是用这个简单的管理框架,你今天做的产品和业务是碗里的,跟你今天做的有连带关系的产品和业务是锅里的,而田里的是未来通过公司的内心可以跨界探索的更多价值空间。


2. 机会在哪里

新时代对人的机会在哪里?对事务的机会又在哪里?接下来是系统的拆解:


第一,强烈建议不要盲目追逐热点,浮躁可能导致不利后果。尤其值得强调的是,这次追逐热点的代价可能更高,因为它涉及范式转变,需要改变思考方式和执行方式。如果盲目追逐热点,可能会付出巨大代价,其中包括机会成本。


第二,要勤于学习。这次技术变革相对复杂,建议大家阅读必要的论文。仅仅依赖别人的解读可能无法深入理解,必须花时间去深入研究关键论文,克服惯性思维。有一本书叫《科学发展的范式》,值得大家一看。一般大的范式,过去没法克服惯性思维,包括深度学习,因为这是不同的思考体系,所以一定要尽量克服惯性思维。


第三,一定要深度思考。务必认真思考这次技术变革对人和事务方面的影响,没有人能够避开这一挑战。


第四,必须采取行动导向。一旦理清思路,要立即采取行动。这次技术变革不进则退,涉及结构性改变,需要及时调整。在人际关系方面,这次技术变革可能会拉大人与人之间的距离,所以一旦想明白,要果断采取行动,不然你很快掉队。本来你跟你后面的人、前面的人可能距离不大,但一不小心你可能被甩得很后面,或者你有机会远远超过今天和你跑在差不多一条线上的人。


(二)“事”的机会空间

ChatGPT新机遇分享:新范式、新时代、新机会插图15


事情方面,基于这次范式变更的本质,对于创业公司和企业,基本上可以通过三个维度去探索机会:


第一,在产品和业务层面去探索机会;

第二,你所在的产业是不是有根本性的变革,在产业变革的过程当中去探索更大的机会,你可能面临换个生意的选择,在价值链上占一个不同的价值点;

第三,你所在的产业的研发体系、是不是彻底变革了。由于产业的研发体系会在有效环节发生大变化,大量的变化是找到全新的、由于研发体系变更而带来的机会,有可能就得彻底换一个新的赛道,或者是在同一赛道里面用完全不同的方法去做产品。

1. 事的三个机会版块(数字化基础、数字化应用、改造世界)

人基本上就是在认识世界,改造世界。人是减熵的物种,我们用数字化来延伸自己。数字化产业一直在驱动着这个阶段人类的进步。我们给大家一个系统性的框架,我们从数字化基础、数字化应用、改造世界,这三个机会版块,进行完整的、系统性的机会探索体系。


2. 完整系统的机会探索体系

ChatGPT新机遇分享:新范式、新时代、新机会插图16ChatGPT新机遇分享:新范式、新时代、新机会插图17


数字化发展基础

数字化发展基础永远是平台驱动的,像移动互联网/云、人工智能/边缘计算、新兴平台等。


数字化的应用

我们将人群分为“消费者”、“创作者”、“企业”三个类别,把它分成一格一格的,代表人群时长的分割和人类的基本组织形成,用来系统、完整的探索数字化应用。


在这里,创作者人群是我们特别关注的,他们是站在前沿的:码农、设计师、科学家等。


消费者的需求结果体系,可以借助马斯洛的人类需求层次出发;企业的需求比较稳定,都是降本增效。


借此,我们可以完整的去分析这次范式的变革,每类需求的机会位于哪里。


认识世界、改造世界

人要永远认识世界,认识得更深。认识世界,包括认识自己是世界的一部分,要把知识数字化。


数字化有6种功能可见(Affordance):


信息(2D):这个数字化的能力基本上触达了每一个人类,我们每个人基本上都用电脑,用手机,触达所有的人。

体验(3D):尤其是三维的体验,元宇宙,目前只有少数的品类,游戏、社交等。

关系(抽象)Web3:数字化的抽象关系,信任、激励机制、所有权等;这个需要时间来逐步探索和发展。

物理外部环境:数字化驱动的物理环境交互,自动驾驶、机器人等。

生理内部感知:数字化人内在的脑机接口、内部测试机制,这个目前也是覆盖少数类别,如康复等。

知识(模型):数字化带来的知识是嵌入的,可以用在所有场景之下。

这次我们创新的空间,基本上是用二维的信息,加上嵌入知识,去找所有可以应用的类别;有些品类可以用到其他的数字化能力,如机器人等,可以三位一体的满足人的需求。系统性的探索我们的机会。以上是这个完整的框架。



【奇绩创坛】ChatGPT新机遇分享:新范式 新时代 新机会.pdf-第一页
联系烽火研报客服烽火研报客服头像
  • 服务热线
  • 4000832158
  • 客服微信
  • 烽火研报客服二维码
  • 客服咨询时间
  • 工作日8:30-18:00